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Introduction - Model
Bayesian linear dynamical systems (BLDS) are widely applicable
probabilistic models for sequential data.

I Parameters θ = {A,B,Q,C,D,R,m0,P0} are stochastic
(essentially latent variables),

yn ∼ N (Cxn + Dun,R)
xn ∼ N (Axn−1 + Bun,Q)
x1 ∼ N (m0,P0)
θ ∼ p(θ)

N

xn

yn

θ

Fully Bayesian treatment discourages over-fitting and enables the
automatic learning of the model’s structure, i.e. the state space’s
optimal dimensionality.
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Introduction - Variational inference
7 Exact inference of BLDS is intractable
3 Structured mean-field variational inference

I factor latent variable sequence from parameters
p(X,θ|Y) ≈ q(X,θ) = qx(X)qθ(θ)

Variational inference turns inference into an optimization problem,
maximizing the lower bound on model evidence:

L(q) = ln p(Y)− KL(q(X,θ)‖p(X,θ|Y))

Log optimal distributions that maximize L(q):

ln qx(X) = 〈ln p(Y,X,θ)〉qθ(θ) + const.

ln qθ(θ) = 〈ln p(Y,X,θ)〉qx(X) + const.
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Introduction - Existing methods
Hardest part is inferring the statistics of the marginal posterior
q?

x(xn) and q?
x(xn,xn+1), as needed to update qθ(θ).

I Must care for terms in ln q?
x(X) that involve expectations of

quadratics taken w.r.t. qθ(θ)
I For example, 〈ln p(xn|xn−1)〉qθ(θ) includes the term
〈ATQ−1A〉qθ(θ)

I Cannot use the usual Kalman filter/smoother algorithms.

Belief propagation was first approach [Beal, 2003], followed by
several alternative methods.

7 Existing methods do not scale linearly with time, are not
numerically accurate/stable, or are not equivalent to the original
belief propagation algorithm.
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Proposed method
Decompose problematic second moment quadratic terms
into first moment quadratics plus covariances.
For generic matrices Ψ and Ω, and covariance matrix Λ, taken
w.r.t. qθ(θ), the following decomposition holds for arbitrary p(θ)1:

〈ΨTΛ−1Ω〉 = 〈Ψ〉T〈Λ−1〉〈Ω〉+ ΣΨΛΩ

ΣΨΛΩ =
∑

i

∑
j〈Λ−1〉(i,j)cov[ψ(i),ω(j)].

We apply matrix inversion lemmas to derive new forward (filter)
and backward (smoother) algorithms that

I scale linearly with time
I respect parameter covariances
I have the same desirable forms of the Kalman filter/smoother

1 See [Neri et al., 2020] and the Appendix for details:
http://www.music.mcgill.ca/~julian/vblds.
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Proposed method - forward pass
The forward pass calculates the mean µn and covariance Vn of
the marginal probability2, ∀n ∈ [1. . N ]:

qx(xn|y1:n) =
p(yn|xn)qx(xn|y1:n−1)

qx(yn|y1:n−1)

y1 yn−1 yn

xnxn−1x1

2 Full derivations of the forward and backward pass are included in the
appendix: http://www.music.mcgill.ca/~julian/vblds.
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Proposed method - forward pass
The predictive distribution is

qx(xn|y1:n−1) =
∫
p(xn|xn−1)qx(xn−1|y1:n−1)dxn−1

= N (xn|mn−1,Pn−1)

where the mean mn−1 and covariance Pn−1 are

Gn−1 = I−Vn−1 (I + ΣAQAVn−1)−1 ΣAQA

mn−1 = 〈A〉Gn−1
(
µn−1 −Vn−1ΣAQBun

)
+ 〈B〉un

Pn−1 = 〈A〉Gn−1Vn−1〈A〉T + 〈Q〉

y1 yn−1

xn−1x1 xn
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Proposed method - forward pass
The filtered output probability is

qx(yn|y1:n−1) =
∫
p(yn|xn)qx(xn|y1:n−1)dxn

= N (yn|ŷn,Sn)

where the mean ŷn and covariance Sn are

Ln−1 = I−Pn−1 (I + ΣCRCPn−1)−1 ΣCRC

ŷn = 〈C〉Ln−1 (mn−1 −Pn−1ΣCRDun) + 〈D〉un

Sn = 〈C〉Ln−1Pn−1〈C〉T + 〈R〉

y1 yn−1 yn

xnxn−1x1
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Proposed method - forward pass
The updated marginal posterior probability is

qx(xn|y1:n) =
p(yn|xn)qx(xn|y1:n−1)

qx(yn|y1:n−1) = N (xn|µn,Vn)

where the state’s mean and covariance are

Kn = Ln−1Pn−1〈C〉TS−1
n

µn = Ln−1 (mn−1 −Pn−1ΣCRDun) + Kn (yn − ŷn)
Vn = (I−Kn〈C〉) Ln−1Pn−1

→ Kn is the (Bayesian) Kalman gain.

y1 yn−1 yn

xnxn−1x1
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Proposed method - forward pass
Complete forward pass equations:

Gn−1 = I−Vn−1 (I + ΣAQAVn−1)−1 ΣAQA

mn−1 = 〈A〉Gn−1
(
µn−1 −Vn−1ΣAQBun

)
+ 〈B〉un

Pn−1 = 〈A〉Gn−1Vn−1〈A〉T + 〈Q〉

Ln−1 = I−Pn−1 (I + ΣCRCPn−1)−1 ΣCRC

ŷn = 〈C〉Ln−1 (mn−1 −Pn−1ΣCRDun) + 〈D〉un

Sn = 〈C〉Ln−1Pn−1〈C〉T + 〈R〉

Kn = Ln−1Pn−1〈C〉TS−1
n

µn = Ln−1 (mn−1 −Pn−1ΣCRDun) + Kn (yn − ŷn)
Vn = (I−Kn〈C〉) Ln−1Pn−1

When all parameter covariances are zero (ΣAQA = 0, etc.) the
forward pass reduces exactly to the Kalman filter!
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Proposed method - backward pass
Backward pass computes the marginal posterior given all the data:

qx(xn|Y) = qx(xn|y1:n)
∫
p(xn+1|xn)qx(xn+1|Y)

qx(xn+1|y1:n) dxn+1

= N (xn|µ̂n, V̂n).

Propagates backwards from n = N − 1 to n = 1:
Jn = GnVn〈A〉TP−1

n

µ̂n = Gn (µn −VnΣAQBun+1) + Jn
(
µ̂n+1 −mn

)
V̂n = GnVn + Jn

(
V̂n+1 −Pn

)
JT

n .

Equivalent to RTS smoother when parameter covariances are zero!
x1 xn−1 xn xn+1 xN

y1 yn−1 yn yn+1 yN
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Proposed method - validation
Compared the numerical accuracy across the existing methods:

I belief propagation (ground truth) [Beal, 2003]
I Cholesky factor approach [Barber and Chiappa, 2006]
I Cholesky factor approach with augmented state [Barber, 2006]
I LDL decomposition [Luttinen, 2013]

Proposed filter/smoother’s q̂x(X) is mathematically equivalent and
more numerically stable than the ground truth qx(X).
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Application - Bayesian frequency estimator (BFE)
Structure the dynamics matrix so elements of 2× 1 sub-vector xnk

oscillate at fk = arccos(νk + 1)/(2πT ) Hz:

Ak =
(

1 1
0 1

)
+
(

1 1
2

2 1

)
νk, Qk = τ−1

k I

Set the amplitude gk and initial phase φk through the initial mean

m0k = gk

(
sin(φk)

2 cos(φk) tan(πfkT )

)

Conjugate Normal-Gamma priors over the model parameters

p(ν|τ )p(τ ) =
∏K

k=1N (νk|0, α−1
k τ−1

k )Gam(τk|e0, i0)
p(ρ) = Gam

(
ρ|r0, s0)

Automatic relevance determination (ARD) hyperparameter αk can
promote sparse solutions when optimized [Beal, 2003].
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Application - Results
Compared the proposed BFE with state-of-the-art methods.
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(a) One sinusoid.
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While BFE is more complex than existing methods, it can
I infer the number of relevant oscillations in a signal,
I infer a signal’s noise variance,
I measure frequency, amplitude and phase estimate uncertainty,
I separate a noisy signal into a set of filtered oscillations.
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Conclusion
We presented a new algorithm for inferring the latent state
sequence of a BLDS → Bayesian generalization to the Kalman
filter and smoother.

I more numerically stable than existing routines and respects
the statistical moments of the parameters

I cost that scales linearly with the data sequence length
I applicable to BLDS and its extensions, like recurrent switching

linear dynamical systems
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