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Introduction - problem

Given a single-channel recording of people talking in a reverberant and noisy space.

e N
n(t) s1(t)
(@) D) )
@ s1(t)—= N y(t)
0 A

)

Reverb (h, h,)

Retrieve separate, de-reverberated and noise-free signals of each talker, s1, so.
Applications: re-mixing, hearing aids, dictation, and augmented reality.
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Introduction - review

No constraint on causality, model size, or computational complexity.

» Seen immense progress with deep learning, and is mature enough for sepa-
rating speech with high quality.

Examples: [Luo and Mesgarani, 2019] [Luo et al., 2020] [Subakan et al., 2021]
[Cord-Landwehr et al., 2022]

Real-time

Must be causal with minimal “look-ahead”, compact, and efficient.

» Harder than non-real-time because models must be compact, and only use
current and past signal information.
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Introduction - overview of methodology

We propose real-time speech separation deep neural network architectures that are
causal,
resource-efficient,
order of magnitude cheaper than current state-of-the-art (SOTA),

and require only a small look-ahead.

For training and testing, we
» explore different loss functions and soft thresholds,
> test models on real recordings,

» and propose a new non-intrusive channel separation estimate.
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Methodology - modular system architecture
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Methodology - system architecture

Modules are multi-decoder generalizations of the convolutional recurrent U-net
(CRUSE) [Braun et al., 2021].
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Y: input short-time Fourier transform (STFT)
D: number of decoders

Sg : output STFT of decoder d

CTFs: convolutive transfer functions
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Loss functions - overview

Utterance-level permutation invariant training (uPIT) [Kolbzk et al., 2017]:
LypiT = min (5 (51, §1) +L (52,§2) L (Sl, §2> +L (52, gl)) : (1)

Baseline L: scale-invariant signal-to-distortion ratio (SISDR) [Roux et al., 2019], the
SOTA distance metric.
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Loss functions - distance metric and soft threshold

The complex compressed MSE (CCMSE) L between target source r and estimate
d, with compression ¢ and weight ), is
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Datasets and settings

Train and validate

» Generated mixtures of 10 s duration at 16 kHz.
» 700 h speech, 246 h noise, 128k RIRs simulated in 2000 rooms.
» Training data is made “on-the-fly".
» Validate speech corpora different from train.
Test

» REAL-M [Subakan et al., 2022] - 1436 real-world single-microphone recordings of
two talkers in different acoustic environments from laptops, smartphones, etc.

STFT 20 ms window, 50% overlap, Ngrr = 320.
Network input: 161 power-compressed complex frequency components.
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Metrics and baseline

DNSMOS [Reddy et al., 2022]: non-intrusive estimator of mean opinion score (MOS)
for signal quality (SIG), background noise (BAK) and overall (OVR).

We propose a novel, non-intrusive metric, the channel separation estimate (CSE),
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Multiply-accumulate (MAC) operations per 10 ms of audio.

Baseline models:
» SepFormer [Subakan et al., 2021] large offline speech separator

» E2E - end-to-end version, similar complexity to cascade (CAS) version.
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Results
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Results - ablation for cascaded modules

Stage NS | NS + SS NS + 55 + DR
early | anechoic
A DNSMOS-SIG 0.17 -0.08 -0.07 -0.15
A DNSMOS-BAK | 0.50 0.52 0.61 0.49
A DNSMOS-OVR | 0.32 0.11 0.17 -0.04
A CSE 0.00 20.31 21.33 21.02

Table: Output improvement from each stage of a cascade model trained with CCMSE.
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Results - balancing weaker signals with soft threshold loss
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Figure: Result of using different soft thresholds 7 in dB when training the E2E model using
CCMSE loss on early reflection targets.
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Results - audio example - DNS2022
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Results - audio example - REAL-M
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Results - audio example - REAL-M
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Conclusion & Future Work

Conclusions
» task-splitting noise suppression (NS), reverberant speech separation (SS), and
de-reverberation (DR) is more efficient than the end-to-end model in terms of
separation and speech quality
> including early reflections in target outputs leads to better signal quality
» Subtractive separation is most efficient
» -10 dB threshold — better separation

Future work
> listening study to measure subjective quality on real recordings

> evaluate CSE metric with a listening study

> apply subtractive separation to recursively separate several talkers
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