Package wiat :: Package TM :: Module Radiation :: Class UnflangedOpenEnd
[hide private]
[frames] | no frames]

Class UnflangedOpenEnd

source code

Unflanged open end radiation impedance models

References:

  1. J. Dalmont and C.J. Nederveen, "Radiation impedance of tubes with different flanges: numerical and experimental investigations ," Journal of Sound and Vibration, vol. 244, pp. 505-534, 2001.
  2. R. Caussé, J. Kergomard, and X. Lurton, "Input impedance of brass musical instruments - Comparaison between experimental and numerical models," J. Acoust. Soc. Am., vol. 75, pp. 241-254, 1984.
  3. H. Levine and J. Schwinger, On the radiation of sound from an unflanged circular pipe. Phys. Rev., 73(4), pp. 383-406, 1948.

TODO: implement the exact solution from Levine and Schwinger

Instance Methods [hide private]
 
__init__(self, d, model='Dalmont_Nederveen', m=1.0)
Radiation from an unflanged open pipe (Levine and schwinger)
source code
 
__call__(self, f, T) source code
 
TM(self, f, T) source code
 
Z_Dalmont_Nederveen(self, f, T)
Unflanged pipe radiation impedance approximation (ka < 3.5) from Dalmont and Nederveen
source code
 
Z_Causse(self, f, T)
Unflanged pipe radiation impedance approximation (ka < 1.5) from Causse & al.
source code
 
Z_Levine_Schwinger(self, f, T) source code
Method Details [hide private]

__init__(self, d, model='Dalmont_Nederveen', m=1.0)
(Constructor)

source code 

Radiation from an unflanged open pipe (Levine and schwinger)

Parameters:
  • d - diameter of the open end
  • m - multiplication factor (to take care of sperical wave, approximation from Causse)

Z_Dalmont_Nederveen(self, f, T)

source code 

Unflanged pipe radiation impedance approximation (ka < 3.5) from Dalmont and Nederveen

R = -|R0|exp(-2j*ka*delta), where delta is the frequency dependant length correction

See reference [1] page 509

Z_Causse(self, f, T)

source code 

Unflanged pipe radiation impedance approximation (ka < 1.5) from Causse & al. See [2]